Minerals and Rocks

The rest of this chapter is devoted to a brief overview of a few of the important aspects of physical geology, starting with minerals and rocks. This is followed by a review of Earth’s internal structure and the processes of plate tectonics, and an explanation of geological time.

The Earth is made up of varying proportions of the 90 naturally occurring elements—hydrogen, carbon, oxygen, magnesium, silicon, iron, and so on. In most geological materials, these combine in various ways to make minerals. Minerals will be covered in some detail in Labs 2 and 3, but here we will briefly touch on what minerals are, and how they are related to rocks.

A mineral is a naturally occurring combination of specific elements that are arranged in a particular repeating three-dimensional structure or lattice.[1] The mineral halite is shown as an example in Figure I4.

Figure I5: The lattice structure and composition of the mineral halite (common table salt).
Figure I4: The lattice structure and composition of the mineral halite (common table salt).

In this case, atoms of sodium (Na: purple) alternate with atoms of chlorine (Cl: green) in all three dimensions, and the angles between the bonds are all 90°. Even in a tiny crystal, like the ones in your salt shaker, the lattices extend in all three directions for thousands of repetitions. Halite always has this composition and this structure.

There are thousands of minerals, although only a few dozen are mentioned in this book. In nature, minerals are found in rocks, and the vast majority of rocks are composed of at least a few different minerals. A close-up view of granite, a common rock, is shown in Figure I5. Although a hand-sized piece of granite may have thousands of individual mineral crystals in it, there are typically only a few different minerals, as shown here.

Rocks can form in a variety of ways. Igneous rocks form from magma (molten rock) that has either cooled slowly underground (e.g., to produce granite) or cooled quickly at the surface after a volcanic eruption (e.g., basalt). Sedimentary rocks, such as sandstone, form when the weathered products of other rocks accumulate at the surface and are then buried by other sediments. Metamorphic rocks form when either igneous or sedimentary rocks are heated and squeezed to the point where some of their minerals are unstable and new minerals form to create a different type of rock. An example is schist.

Note: Element symbols (e.g., Na and Cl) are used extensively in this book. In Appendix 1, you will find a list of the symbols and names of the elements common in minerals and a copy of the periodic table. Please use those resources if you are not familiar with the element symbols.

 

Figure I6: A close-up view of the rock granite and some of the minerals that it typically contains (H = hornblende (amphibole), Q = quartz and F = feldspar). The crystals range from about 0.1 to 3 millimetres (mm) in diameter. Most are irregular in outline, but some are rectangular.
Figure I5: A close-up view of the rock granite and some of the minerals that it typically contains (H = hornblende (amphibole), Q = quartz and F = feldspar). The crystals range from about 0.1 to 3 millimetres (mm) in diameter. Most are irregular in outline, but some are rectangular.

A critical point to remember is the difference between a mineral and a rock. A mineral is a pure substance with a specific composition and structure, while a rock is typically a mixture of several different minerals (although a few types of rock may include only one type of mineral). Examples of minerals are feldspar, quartz, mica, halite, calcite, and amphibole. Examples of rocks are granite, basalt, sandstone, limestone, and schist.

Key Takeaway: Know the difference between minerals and rocks!

If you are currently taking a geology course, you’ll likely be asked more than once to name a mineral or a rock that has specific characteristics or composition, or was formed in a specific environment. Please make sure that if you’re asked for a rock name that you don’t respond with a mineral name, and vice versa. Confusing minerals and rocks is one of the most common mistakes that geology students make.

Media Attributions

  • Figure I4, I5: © Steven Earle. CC BY.

  1. Terms in bold are defined in the glossary at the end of the book.
definition

License

Icon for the Creative Commons Attribution 4.0 International License

A Practical Guide to Introductory Geology Copyright © 2020 by Siobhan McGoldrick is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book